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1. INTRODUCTION

Marine risers are widely used in the o!shore industry for a variety of purposes, such as deep
water drilling, export and production. Slender marine risers are often subject to
vortex-induced vibration (VIV), and therefore require accurate dynamic modelling for
prediction of natural frequencies, mode shapes and fatigue damage rate. A typical marine
riser tends to have a large characteristic length with rigid lumps and varying tension,
#exural rigidity and mass density. The dynamic behavior of such a riser with variable
properties and discontinuities is di$cult to predict.
The VIV of marine risers has been studied extensively in recent years. Shear7, a program

developed by Professor J. Kim Vandiver and his research group at MIT [1], uses modal
analysis of uniform string and beam models with linearly varying tension to predict the
cross-#ow VIV response in steady, uniform or shear #ows. Kim and Triantafyllou [2],
assuming that the coe$cients in the governing di!erential equation are continuous and
slowly varying, used the WKB method to analyze a slender beam and derived some
asymptotic solutions, which are implemented in Shear7. Recently, Moe et al. [3] have
evaluated a variety of "nite element approaches for the computation of natural frequencies
of marine risers.
A great deal of theoretical research has focused on vibration analysis of tensioned beams.

For a uniform Euler beam under a constant axial load, the e!ect of the axial load on the
natural frequencies has been found by considering the natural frequencies to be functions of
a non-dimensional load parameter and boundary conditions [4]. Using the dynamic
sti!ness method, Howson and Williams [5] discussed the natural frequencies of
Timoshenkomembers under constant tension. For a uniform beam under a linearly varying
axial load, Laird and Fauconneau [6] discussed the upper and lower bounds of natural
frequencies. Using a power series expansion, Dareing and Huang [7] found natural
frequencies of a uniform marine drilling riser.
A dynamic riser model is needed which is able to account for non-uniform properties

such as mass density, bending rigidity and tension distribution, and discontinuities such as
0022-460X/02/140750#11 $35.00/0 � 2002 Elsevier Science Ltd.
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intermediate supports. A closed-form solution to such a system is not generally possible. An
approximation to the vibration analysis of such a riser may be accomplished by replacing
the variable parameters with constant ones. For example, a variable axial load is often
approximated by a tension that is constant over each element. However, many degrees of
freedom in the approximation are required in order to obtain accurate results.
This paper investigates the vibration analysis of marine risers by combining the dynamic

sti!ness method [8}11] with the WKB theory [12, 13], which assumes that the coe$cients
in the di!erential equation of motion are slowly varying. The WKB-based dynamic sti!ness
matrix is "rst derived and the frequency-dependent shape function is expressed implicitly.
Next the natural frequencies are found by equating to zero the determinant of the global
dynamic sti!ness matrix, which is obtained by following the procedure of the conventional
"nite element method. Finally, two examples of non-uniform risers are analyzed, and the
results are compared to show the e$ciency of this method.

2. DERIVATION OF THE WKB-BASED DYNAMIC STIFFNESS MATRIX

A general marine riser is a long slender beam system with variable tension distribution,
bending rigidity and mass density. The mass/length changes are often discontinuous. Such
a riser can be discretized into elements having continuously varying properties within the
elements and allowing discontinuities to occur between elements. For each element, the
WKB-based dynamic element sti!ness matrix is derived by combining the dynamic
direct-sti!ness method [9] with the WKB approximation method [12, 13], which is
a powerful tool for obtaining a global approximation to the solution of a linear di!erential
equation.
The non-dimensional governing equation of motion of a riser can be written as [2]
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The subscript 0 represents the values at a reference cross-section, and the term f (s, �)
denotes a non-dimensional external force.
Letting >(s, �)"R (s)H (�), the equation for R(s) is
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The formal WKB expansion is written as
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Substituting this equation into equation (3), identifying the same order terms, truncating the
series and selecting �"�, Kim and Triantafyllou [2] found the asymptotic solution by
taking "rst two terms in equation (4),
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Taking a "rst order approximation, then the nodal displacement vector VF , can be formulated in
matrix form as
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Equation (6) can be written in abbreviated form as

VF"D
�
GC. (7)

The nodal forces, F, for an element with changing properties can be written as
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Substituting for R(s) from equation (5), equations (8}11) can be written in the matrix form
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Combining equation (7) with equation (12) leads to

F"KVF, (13)

where K"DG	� is the WKB-based dynamic element sti!ness matrix, whose elements are
derived by using Maple V [14].
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3. FREQUENCY-DEPENDENT SHAPE FUNCTION

In order to derive the frequency-dependent shape function, rewrite equation (5) as
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Solving for C from equation (7) and substituting it into equation (14) results in
,

R(s)"�V
�
, (15)

where � is the frequency-dependent shape function obtained by means of Maple V.

4. NATURAL FREQUENCIES AND MODE SHAPES

With the derived local WKB-based dynamic sti!ness element matrix K in equation (13),
one can obtain the global dynamic sti!ness matrix by following the procedure of the
conventional "nite element method [15], in which local elements are cast into global form
by co-ordinate transformations. Then, boundary conditions are imposed. Finally, the
equation of motion of free vibration in the restrained global dynamic sti!ness form can be
written as
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It is noted that the global dynamic sti!ness matrixK
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frequency. Solving its eigenvalues is not generally straightforward. Natural frequencies can
be found by equating the determinant of K
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Once the natural frequencies are found, one can use equation (16) to solve for a speci"c
mode vector. An e!ective way is to use a triangular decomposition. For a speci"c natural
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The general recurrence relation can be written as
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Hence, mode components at element nodes are calculated from the above formulas.
Di!erent from a conventional FEM, the displacements at nodes are not necessarily
indicative of what is occurring within elements. Hence, post-processing is necessary to
obtain mode shapes. One can use equation (15) to calculate mode components for any point
within an element. In this way, accurate mode shapes can be obtained.
On the basis of the above procedure, Matlab codes for solving natural frequencies and

mode shapes for marine risers were developed.

5. NUMERICAL EXAMPLES

5.1. AN EXAMPLE OF A UNIFORMDRILLING RISER UNDER LINEARLY VARYING TENSION [7]

The parameters of a simply supported riser are length l"152)4m; outer diameter
d
�
"0)6096 m; thickness t"0)0159m; Young's modulus E"2)07�10�� N/m�; moment of

inertia I"1)30�10	� m�; mass per unit length m"995)92 kg/m (includes mass of drilling
mud and seawater); tension at the bottom ball joint ¹

�
"1)27�10�N; net weight of riser

per unit length in seawater w"3)12�10�N/m (includes 554)79N/m for choke and kill
lines); cross-sectional area of the riser exterior A

�
"0)2917m�; cross-sectional area of the

riser interior A
	
"0)2278 m�; density of seawater �



"1038)9 kg/m�; density of drilling

mud �
�
"1362)8 kg/m�.

This riser was discretized into "ve elements with equal length. Using the WKB-based
dynamic sti!ness method, Table 1 shows the "rst "ve natural frequencies. In order to verify
TABLE 1

Comparison of circular natural frequencies

Order Dareing and Huang [7] FEM WKB-DSSM
(60 elements) (5 elements)

1 0)8150 0)8150 0)8150
2 1)8036 1)8038 1)8037
3 3)0876 3)0879 3)0878
4 4)7375 4)7377 4)7377
5 6)7890 6)7896 6)7896



Figure 1. The "rst three natural mode shapes for a 500-ft riser:***, "rst mode; } ) } )} ) } ) , secondmode; -----,
third mode.
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the results, a "nite element procedure which assumed constant tension over each beam
element was developed. Converged values for natural frequencies were found employing 60
elements. The approximation result [7] previously obtained by means of a power series
expansion is also included for comparison. It is observed from Table 1 that the natural
frequencies acquired by the WKB-based dynamic sti!ness method using only "ve elements
are accurate to order O(10	�). Measuring the position x (m) from the bottom, Figure 1
depicts the "rst three mode shapes.
Table 1 depicts that the natural frequencies obtained by Dareing and Huang [7] are close

to those found using the FEM and the WKB-based dynamic sti!ness method. However,
their "nding of &&points of in#ection'' in mode shapes is not correct.

5.2. AN EXAMPLE OF A NON-UNIFORM RISER WITH VARIABLE PROPERTIES

Due to attachments such as buoyancy modules, a typical marine riser is a system with
variable properties including tension and mass density. The simply supported
Helland}Hanson riser is one such riser, with the following speci"cations: length
¸"689)29m; outer steel diameter d

�
"0)5334m; inner steel diameter d

	
"0)5016 m;

buoyancy diameter d
�
"1)1303 m.

Figures 2 and 3 shows the variations of the mass density and tension at the measured
points which are marked respectively. The position is measured from the bottom. These
"gures demonstrate that the mass density does not change continuously, and tension does
not vary linearly.
Using the WKB-based dynamic sti!ness method, the riser was discretized into 11

elements. Figure 4 shows the "rst 20 natural frequencies. The approximated results using
Shear7 [1], which assumed the riser to be an equivalent uniform beam with linearly varying
tension, are included for comparison. The Shear7 results are accurate for lower order
natural frequencies.
Figure 5 depicts the 20th mode shape, which is of interest. The locations of the antinodes

are not evenly spaced. Therefore, the mode di!ers from trigonometric ones.



Figure 2. The mass density variation of the Helland riser.

Figure 3. The tension variation of the Helland riser.
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It is found that 282 elements are needed for the standard "nite element method to obtain
a good 20th mode shape and a converged natural frequency of 0)6952 Hz. This is close to
0)6955 Hz by the WKB-based dynamic sti!ness method with only 11 elements. Very few
elements are necessary if they are chosen wisely. Within each element, properties must vary
slowly so as to satisfy the WKB assumptions. Discontinuities should occur at the junctions
of elements. In this example, the mass/length changes abruptly 10 times requiring a total of
11 elements to adequately model the system.

6. CONCLUSIONS

Natural frequencies and mode shapes are important information for predicting the VIV
of marine risers. The WKB-based dynamic sti!ness method has been introduced to analyze



Figure 4. The comparison of the natural frequencies with those obtained by Shear7: �, DSM; *}, by Shear7.

Figure 5. The 20th mode shape of the Helland riser (freq"0)6955 Hz).
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non-uniform marine risers on the assumption that the properties are slowly varying within
elements. When compared with a conventional "nite element method, the present method
demonstrates some advantages, such as eliminating spatial discretization error since the
accurate asymptotic solution is used within elements and "nding accurate natural
frequencies by means of a limited number of elements.
In the determination of natural frequencies from equation (16), it is noted that X"0 is

not necessarily a trivial set of solutions but corresponds, sometimes, to a mode shape whose
nodes are nodes of the FEM. For uniform members, it is possible to derive an infallible
search algorithm [16], but it does not seem to be so easy for non-uniform beams under
linearly varying tension. One way of overcoming this di$culty is to calculate and store all
natural frequencies of clamped}clamped non-uniform members and then apply the
Wittrick}William algorithm [5, 17].
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APPENDIX A: NOMENCLATURE
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I(x) area moment inertia of the beam
l length of a riser element
m(x) mass of the beam per unit length
M

�
reference mass per unit length

P(s) dimensionless bending rigidity
Q(s) dimensionless tension
;(s) dimensionless mass density
s dimensionless distance
¹(x) tension of the beam per unit length
w transverse displacement of riser
x vertical co-ordinate measured in axial direction of riser
> dimensionless de#ection
�

�
reference frequency

� dimensionless time
� dimensionless frequency, �/�

�
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